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Abstract 
Zero-inflated count data is easily reached in real field. Over-dispersion is the consequence of zero inflation in count 

data. For modeling this kind of count data, several zero adjusted models such as Zero Inflated Poisson, Zero Inflated 
Negative Binomial, Hurdle Poisson and Hurdle Negative Binomial models are more suitable than basic statistical models. 
The best zero adjusted model selection is the key aim of this research. In this study, R code has been used to simulate 
datasets as well as to compare these models based on Akaike information criterion, Bayesian information criterion and 
Vuong test. The result of this study suggests that Hurdle Negative Binomial model has been preferred as the best fitted 
model for count data with excess of zero.      
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1. Introduction 
Count data means discrete number of occurrences of an event in a fixed period of time. A count variable can 

takes positive integer values or zero because an event cannot occur a negative number of times. There are 
numerous example of the use of count variables in psychology, public health, insurance, epidemiology, 
behavioral sciences and many other research areas. Poisson regression analysis is a technique used for modeling 
the count data [2]. It is a non-linear regression analysis of the Poisson distribution, where the analysis is highly 
suitable for use in analyzing count data. Poisson model is a part of class of models in generalized linear models 
(GLM). It uses natural log as the link function and models the expected value of response variable. The natural 
log in the model ensures that the predicted values of response variable will never be negative. This model is used 
under two principal assumptions: one is that events occur independently over given time and the other is that the 
conditional mean and variance are equal. However, this restriction is violated in many applications because data 
often exhibits over-dispersion. Over-dispersion occurs when the variance is significantly larger than the mean. 
Generally, two sources of over-dispersion are determined which are heterogeneity of the data and excess of 
zeros.  

In case of over-dispersion problem due to heterogeneity of the data, Negative Binomial (NB) model may be 
used instead of Poisson model [4], [10]. In real field, it is possible that count data is heterogeneous with excess of 
zero. As a result, over-dispersion problem is occurred due to both causes heterogeneity of the data and excess of 
zero. Zero-inflated count data cannot be modeled accurately with Negative Binomial model.  

In such situation, zero-inflated models (i.e. Zero Inflated Poisson and Zero Inflated Negative Binomial) and 
hurdle models (i.e. Hurdle Poisson and Hurdle Negative Binomial) are more appropriate for modeling this kind 
of count data. The main motivation for zero-inflated count models is that real life data frequently display over-
dispersion and excess of zero [5]. In zero-inflated model it is assumed that the zero observation have two 
different sources i.e. “structural” and “sampling”. The structural zero observation happened naturally but the 
sampling zero observation happened by chance.  

Hurdle model is another model which also provides a way of modeling the excess zeros in addition to 
allowing for over-dispersion, which is proposed by Mullahy (1986) [8].  But hurdle model assumes that all zeros 
of data are from only “structural” source. Moreover, both zero-inflated and hurdle models have statistical 
advantage to standard Poisson and Negative Binomial models in such a way that these models the preponderance 
of zeros as well as the distribution of positive counts simultaneously. This study has been conducted to compare 
zero inflated models (ZIP, ZINB) and hurdle models (HP, HNB) using simulated data. Furthermore, this study 
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will provide valuable information about several zero adjusted models as well as will present the best model for 
modeling zero-inflated count data which is selected based on AIC, BIC and Vuong test. 

2. Materials and Methods  

2.1. Models 

2.1.1. Zero-inflated Model 
Zero-inflated model is a mixture of two statistical processes, one always generating zero counts and the other 

generating both zero and non-zero counts, which is introduced by Lambert (1992) [5]. This is a two parts model 
which provides a way of count data modeling with excess zeros additionally to allowing for over-dispersion. In 
case of zero inflated model, a Logit model with Binomial assumption is used to determine if an individual count 
outcome is from the always zero or the not always zero group and then Poisson or Negative Binomial model is 
used to model outcomes in the not always zero group [3], [6]. For case i, with probability iπ  the only possible 
response of the first process is zero counts, and with probability of )1( iπ− the response of the second process is 

governed by Poisson or Negative Binomial distribution with mean iµ .  

The probability mass function of Zero Inflated Poisson (ZIP) distribution is given by: 
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And the probability mass function [14] of Zero Inflated Negative Binomial (ZINB) distribution is given by: 
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where 10 ≤≤ iπ , 0≥iμ  and α  is the dispersion parameter. The parameter iμ  is expressed as: 
)ixθ(iμ ′= exp .where, θ  is the (p+1)×1 vector of unknown parameters associated with the known covariates 

vector xi and p is the number of covariates.                          

The parameter iπ is often referred as the zero-inflation factor, which is the probability of zero counts from 

the binary process. According to Lambert, we can model iπ  using a Logit model given by: ,izδ)iit(π ′=log
where, δ  is the (q+1)×1 vector of zero-inflated coefficients to be estimated which is associated with the known 
zero-inflation covariates vector zi and q is the number of the covariates in the model. In the terminology of 
generalized linear models (GLMs), ( )iµlog  and ( )iπlogit  are the log link for the Poisson or Negative Binomial 
mean and logit link for Bernoulli probability of success respectively [5]. 

Zero-inflated models (ZIP and ZINB) are expressed as: 

( )
( ) iqzqδ..............izδizδizδδiπit

ipxpθ................ixθixθixθθiμ
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The log-likelihood function of ZIP model is:  
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And the log-likelihood function of ZINB model is:
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The parameters of this model can be estimated using maximum likelihood estimation.  

2.1.2. Hurdle Model 
Hurdle model is another model for modeling over-dispersed count data with excess zeros which is introduced 

by Mullahy (1986) [8]. This model assumes that two different processes drive the zero and non-zero counts 
respectively. The hurdle component of the model corresponds to the probability that the count is non-zero, while 
the count component corresponds to the distribution of positive counts. This model contains also two parts: the 
first part is a binary (presence/absence) outcome model (e.g. a logistic regression) and the second part is a count 
model which is governed by truncated distribution. In case of Hurdle Poisson (HP) model and Hurdle Negative 
Binomial (HNB) model, second part is governed by truncated Poisson distribution and truncated Negative 
Binomial distribution respectively. 

The unconditional probability mass function of Hurdle Poison (HP) distribution is: 
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And the unconditional probability mass function of Hurdle Negative Binomial (HNB) distribution is:  
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where, 10 ≤≤ iπ , 0≥iμ  and α  is the dispersion parameter. The conditional mean iμ  of the Poisson or 
Negative Binomial distribution is expressed as, ),ixθ(iμ ′= exp where xi is a 11)(p ×+  vector of covariates, θ  
is a 11)(p ×+  vector of parameters to be estimated and p is the number of covariates in the model. 

The parameter iπ is the probability of observing a zero count and )iπ( −1 is the probability of observing a 
positive count. For the hurdle model, the zero hurdle component describes the probability of observing a positive 
count whereas, for the zero-inflated model, the zero-inflation component predicts the probability of observing a 
zero count from the point mass component [15]. We can model ( )iπ−1  using a Logit model given by: 

izδ)iπit( ′′=−1log , where zi is a 11)(q ×+  vector of covariates, δ  is a 11)(q ×+  vector of parameters to be 
estimated and q is the number of the covariates in the model. 

Hurdle models (HP and HNB) are expressed as:  

( )
( ) iqzqδ.........izδizδizδδiπit

ipxpθ................ixθixθixθθiμ

+++++=−
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 (8)   

The log-likelihood function of HP is:  
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And the log-likelihood function of HNB is:
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The parameters of this model can be estimated using maximum likelihood estimation.  

2.2. Model Selection 

In this study, to select the best model among ZIP, ZINB, HP and HNB models Akaike information criterion 
(AIC), Bayesian information criterion (BIC) and Vuong test have been used. 

2.2.1. AIC and BIC 
Information criteria such as the Akaike information criterion (AIC) and the Bayesian information criterion 

(BIC) are extensively used to compare and select the best model among a set of models. Akaike information 
criterion (AIC) is a measure of the relative quality of statistical models for a given set of data which is introduced 
by Akaike (1973) [1]. Bayesian information criterion (BIC) is another important approach to compare and select 
the consistent model from a set of candidate models which is introduced by Schwarz (1978) [11]. Given a set of 
candidate models for the data, the preferred model is the one with the minimum AIC and BIC value.  

Akaike information criterion (AIC) is defined as:   

AIC = -2log (L) + 2k  (12)   

Bayesian information criterion (BIC) is defined as:       

BIC = -2log (L) + k log (n)  (13)   

where, L is maximum value of the likelihood function for the model, n is sample size and k is the number of 
parameters to be estimated. 

2.2.2. Vuong Test 
Vuong test is used to compare two statistical models for count data [6], [7] which is introduced by Vuong 

(1989) [12]. It is a test that is based on a comparison of the predicted probabilities of two models.  

Let’s define,  

( )
( )
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where, ( )ii XYP1  and  ( )ii XYP2  are the predicted probability of observed count for case i from model 1 and 
model 2 respectively. 

Null hypothesis of Vuong test is considered as: 

H0: Both models are equally appropriate.     

Against the hypothesis: 
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HA: Model 1 is better than model 2, 

or model 2 is better than model 1.       

Under the null hypothesis, the Vuong test statistic is given by: 
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and n is sample size.  

Mathematically, if V is greater than αZ  then model 1 is better than model 2 at α level of significance. 
Conversely, if V is less than αZ−  then model 2 is better than model 1 at α level of significance. Otherwise, 
model 1 and model 2 both models are equally appropriate at α level of significance.  

The flowchart of this study has been shown in Fig. 1. 

[1]  
[2] Fig. 1. Flowchart of this study 

2.3. Simulation Study 

Simulation studies allow researchers to answer specific questions about data analysis, statistical power and 
best practices for obtaining accurate results in empirical research. This study has been conducted based on 
simulated datasets. To complete this study all programs have been written in R (version 3.2.3; packages: 
MASS, pscl) codes. The parameter vector ( )210 ,, βββ  has been used in the simulation study. The parameters 
values have been fixed as 1,1,5.0 210 === βββ  to simulate count data with excess zeros. In this study, 3 
(three) sets zero-inflated count data consisting of 100, 500 and 1000 observations respectively have been 
simulated. The following equation(s) has been used to simulate zero-inflated count datasets using R.  

μ)Y~Poisson(          

2150log XX.μ ++=   (16) 

where, X1 and X2 have been generated from Normal distribution. For simplicity of zero-inflated count data 
modeling, 2 (two) binary covariates have been generated by random sampling method and then ZIP, ZINB, HP 
and HNB models have been applied to each dataset. AIC, BIC and Vuong test values have been computed for 

Data simulation using R code 
 

Application of several zero adjusted models using R 
 

Best model selection procedure based on AIC, BIC and Vuong test 
 

Best fitted model for zero-inflated count data has been selected  
 

Aimed at select the best statistical model for zero-inflated count data ddata 
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ZIP, ZINB, HP and HNB models using each simulated dataset to compare these models as well as to select the 
best model.  

3. Results 
Each dataset contains with excess of zero (i.e. frequency of zero is maximum). The percentage of zero in case 

of each dataset has been shown in the Table 1. 

Table 1. Percentage of zero in several datasets    
     Dataset 

(sample size) 
Dataset 1 
(n = 100) 

Dataset 2 
(n = 500) 

Dataset 3 
(n = 1000) 

Percentage (%) of 
zero 28.0 33.4 29.5 

The result of AIC, BIC and Vuong test values of ZIP, ZINB, HP and HNB in case of several datasets have 
been shown in the following Table(s). 

Table 2. AIC and BIC value of ZIP, ZINB, HP and HNB models 

Model 
Data set 1 
(n = 100) 

Data set 2 
(n = 500) 

Data set 3 
(n = 1000) 

AIC BIC AIC BIC AIC BIC 
ZIP  859.60 875.23 4350.00 4375.29 9820.00 9849.45 

ZINB 498.40 516.64 2402.00 2431.50 5042.00 5076.35 
HP 859.60 875.23 4350.00 4375.29 9820.00 9849.45 

HNB 487.20 505.44 2384.00 2413.50 4992.00 5026.35 

Table 3. Vuong test result to compare ZIP, ZINB, HP and HNB models 
[3]  

Data set Model ZIP ZINB HP HNB 

Data set 1 
(n = 100) 

 

ZIP ---------------    

ZINB 

V = -2.8501  
P = 0.002 
ZINB is 
better 

--------------- 

  

HP 
V = -0.8479  
P = 0.198 
ZIP = HP 

V = 2.8468  
P = 0.002 
ZINB is 
better 

--------------- 

 

HNB 

V = -2.8730  
P = 0.002 
HNB is 
better 

V = -1.7754  
P = 0.038 
HNB is 
better 

V = -2.8700  
P = 0.002 
HNB is 
better 

--------------- 

Data set 2 
(n = 500) 

 

ZIP ---------------    

ZINB 

V = -3.4546  
P = 0.002 
ZINB is 
better 

--------------- 

  

HP 

V = -
0.03641  

P = 0.485 
ZIP = HP 

V = 3.4546  
P = 0.002 
ZINB is 
better 

--------------- 

 

HNB 

V = -3.4394  
P = 0.002 
HNB is 
better 

V = -1.6826  
P = 0.046 
HNB is 
better 

V = -3.4394  
P = 0.002 
HNB is 
better 

--------------- 

Data set 3 
(n = 

1000) 

ZIP ---------------    

ZINB V = -6.2726 
P = 0.000 ---------------   
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[4]  

V=Vuong statistic, P = P-
value; V > 1.64 indicates that 
column model had significantly 
better fit than the row model and V 
< -1.64 indicates that row model 
had significantly better fit than the 
column model at 5% level of 
significance. 

From Table 2 it is seen that, the AIC and BIC value of Hurdle Negative Binomial (HNB) model is lowest in 
case of each dataset, which indicate that HNB model is the best model for modeling zero-inflated count data. The 
result of  Vuong test has been shown in the Table 3 for 3 (three) datasets of sample size 100, 500 and 1000 
respectively, which also indicates that HNB model is the best model for modeling this kind of count data.  

4. Discussion  
For modeling over-dispersed count data with excess of zero, zero-inflated models and hurdle models are more 

suitable than standard Poisson and Negative Binomial (NB) models [5], [8]. Although the choice between the 
hurdle and zero-inflated models should be based on the aim and endpoints of the study, but it is noted that hurdle 
model allows for over-dispersion and also accommodates presence of excess zeros, is more appropriate than 
zero-inflated model [3]. In some real fields, Zero-Inflated Negative Binomial (ZINB) and Hurdle Negative 
Binomial (HNB) models both lead to the same qualitative results and very similar model fits. But the Hurdle 
Negative Binomial (HNB) model is slightly preferable because it has the nicer interpretation [15]. Under the 
conditions of zero-inflation and over-dispersion, the hurdle model is more suitable because it performed well 
consistently and relatively easy to interpret and implement [9]. This study has been conducted using simulated 
data to compare several zero adjusted count data models such as ZIP, ZINB, HP and HNB models. According to 
AIC, BIC and Vuong test values, this study has been focused on Hurdle Negative Binomial (HNB) model as the 
best fitted model for modeling zero-inflated count data.  

5. Conclusions  
Zero-inflated count data have been implemented in real life and zero adjusted count models are being usually 

used in various disciplines such as public health, insurance, epidemiology, behavioral sciences, econometrics etc. 
Over-dispersion is the result zero-inflation which leads to serious underestimation of standard errors and 
ambiguous implication for the estimated parameters [13]. As a result, several estimation methods for several 
models have been anticipated to handle over-dispersed count data. Appropriate statistical model is indispensable 
for estimating parameters correctly which play significant role on interpretations of any study. The estimated 
parameters of the best fitted statistical model lead the accurate result of the analysis. According to this study, we 
suggest to apply Hurdle Negative Binomial (HNB) model as the best fitted statistical model in case of zero-
inflated count data modeling which overcomes the over-dispersion problem.  

An appropriate statistical model for zero-inflated over-dispersed count data has been suggested in this 
research. Hurdle model may be also applied for under-dispersed count data with zero-inflation. In rare practical 
field, under-dispersion may be occurred in case of count data without excess of zero which is also a crisis to 
estimate the parameters accurately. Further study may be conducted to choice a suitable statistical model for 
under-dispersed count data without zero-inflation.  
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ZINB is 
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HP 
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HNB is 
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--------------- 
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