Simulating the binary variates for the components of a socioeconomical system

Ştefan V. Ştefănescu^{1*}

¹Research Institute for Quality of Life, Romanian Academy; stefanst@fmi.unibuc.ro

Abstract

Often in practice the components W_j of a sociological or an economical system \underline{W} take discrete 0-1 values. We talk about how to generate arbitrary observations from a binary 0-1 system \underline{B} when is known the multidimensional distribution of the discrete random vector \underline{B} . We also simulated a simplified structure of B given by the marginal distributions together with the matrix of the correlation coefficients. Different properties of the systems \underline{W} are presented too.

Keywords: binary system, marginal distribution, Monte Carlo simulation, random variates, correlation coefficient.

1. Introduction

A general system \underline{w} with k components $W_1, W_2, W_3, ..., W_k$ is characterized by the features λ_j of every variable W_j and the intensity c_{ij} of the relation between any two components W_i and W_j , $1 \le i, j \le k$. Frequently in practice the relation among the elements of the subsystem $\{W_i, W_j\}$ is a symmetric one, that is $c_{ij} = c_{ji}$.

The characteristic λ_j of the component W_j could be just the parameters which define the marginal distribution of the random variable W_j . In the following we will choose the Pearson correlation coefficient $Cor(W_i,W_j)$ to measure the intensity c_{ij} of the relation which is present between the components W_i and W_j of the system \underline{W} . We mention here that in the literature there are known many other indicators to measure the ratio among the elements W_i and W_j from \underline{W} ([1], [2], [6]).

Figure 1 presents some kinds of systems W.

Many times in practice the system \underline{W} has components W_j with a normal distribution. Such a system will be designated in the subsequent by \underline{X} . For this particular case the system components X_j , $1 \le j \le k$, are dependent normal random variables characterized by their means μ_j and their dispersions σ_j^2 . So we will take $\lambda_j = (\mu_j, \sigma_j)$ and $c_{ij} = Cor(X_i, X_j)$, $1 \le i, j \le k$.

Another class from the systems \underline{W} are binary 0-1 systems designated by \underline{B} . The elements $B_1, B_2, B_3, ..., B_k$ of the system \underline{B} are binary dependent variables which take only the values 0 and 1. To make a distinction between the systems \underline{B} and \underline{X} we will use the notation $r_{ij} = Cor(B_i, B_j)$ in the discrete case and $c_{ij} = Cor(X_i, X_j)$ for the continuous normal marginals variant.

We mention here that the normal type system \underline{X} is completely characterized by the set of the parameters μ_i, σ_i, c_{ij} , $1 \le i < j \le k$, that is k(k+3)/2 values ([3]).

.

^{*} Corresponding author: stefanst@fmi.unibuc.ro

But the multidimensional distribution of an arbitrary binary system \underline{B} has more parameters. For this reason, in opposition with the normal distributions case, we can not define a general binary 0-1 system \underline{B} by knowing only the values μ_i, σ_i, r_{ij} , $1 \le i < j \le k$. More, in the discrete case of \underline{B} , the variance $\sigma_j^2 = Var(B_j)$ depends on the mean $\mu_j = Mean(B_j)$. So, knowing only the marginals and the correlation matrix of \underline{B} we lose a lot of information which define the real multivariate discrete distribution of the system \underline{B} . Some details concerning the behavior of a binary system \underline{B} will be given in the next section.

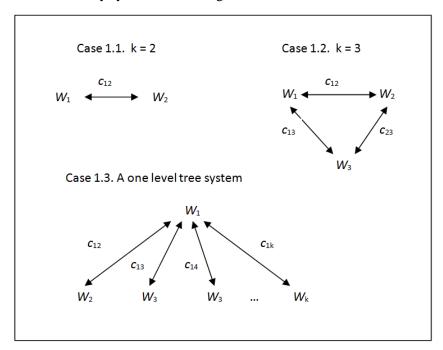


Fig. 1. A system \underline{W} with k components

We reveal a new other aspect which is present for sociological and economical systems too. So, the individuals of a given population estimate the behaviour of each component W_j from a continuous system \underline{W} by putting subjective marks.

In this approach a binary system \underline{B} results from \underline{W} when the marks take only 0 and 1 values. Hence, in practice, we often approximate a continuous system \underline{W} by a binary one, like \underline{B} . In this case we must evaluate the discretization error.

2. The binary 0-1 systems

The binary random vector $\underline{B} = (B_1, B_2, B_3, ..., B_k)$ which takes only 0 and 1 values is completely characterized by the probabilities $P_{i_1, i_2, i_3, ..., i_k}$, $i_j \in \{0, 1\}$, $1 \le j \le k$, where

$$p_{i_1,i_2,i_3,...,i_k} = Pr(B_1 = i_1, B_2 = i_2, B_3 = i_3,..., B_k = i_k)$$

Obviously, $p_{i_1,i_2,i_3,...,i_k} \ge 0$ for all indices $i_j \in \{0,1\}$ and in addition

$$\sum_{i_1=0}^{i_1=1} \sum_{i_2=0}^{i_2=1} \sum_{i_3=0}^{i_3=1} \dots \sum_{i_k=0}^{i_k=1} p_{i_1,i_2,i_3,\dots,i_k} = 1$$
 (1)

To simplify our expose, for any $i_j \in \{0,1\}$, we will use the notation

$$p_{i_1,\ldots,i_{j-1},+,i_{j+1},\ldots,i_k} = p_{i_1,\ldots,i_{j-1},0,i_{j+1},\ldots,i_k} + p_{i_1,\ldots,i_{j-1},1,i_{j+1},\ldots,i_k}$$

So, the equality (1) could be also written in a shorter form as $p_{+,+,+,\dots,+} = 1$.

The marginal distributions of the random vector \underline{B} are defined only by the probabilities $q_j = Pr(B_j = 1)$, $1 \le j \le k$.

Choosing, for example, the component B_1 we deduce

$$Pr(B_1 = 0) = p_{0,+,+,\dots,+} = 1 - p_{1,+,+,\dots,+} = 1 - Pr(B_1 = 1) = 1 - q_1$$

Remark 1. Since the distribution of the system $\underline{B} = (B_1, B_2, B_3, ..., B_k)$ is determined by the probabilities $p_{i_1, i_2, i_3, ..., i_k}$ with the restriction (1) we conclude that a general binary 0-1 system \underline{B} with k components is defined by $2^k - 1$ parameters.

Now we will enumerate some properties of a binary $B = (B_1, B_2)$ system which has only two components.

We remind that the distribution of an arbitrary 0-1 binary vector $\underline{B} = (B_1, B_2)$ is given by the probabilities $p_{i,j} = Pr(B_1 = i, B_2 = j)$ where $i, j \in \{0, 1\}$ and $p_{+,+} = 1$

In this case $q_1 = p_{1,+} = Pr(B_1 = 1)$, $q_2 = p_{+,1} = Pr(B_2 = 1)$, $0 \le q_1, q_2 \le 1$ and therefore

$$p_{1,0} = q_1 - p_{1,1}$$
, $p_{0,1} = q_2 - p_{1,1}$, $p_{0,0} = 1 + p_{1,1} - q_1 - q_2$

Hence we have the inequalities

P2.1.
$$max\{0, q_1 + q_2 - 1\} \le min\{q_1, q_2\}$$

After a straightforward calculus we obtain the relations

P2.2.
$$Mean(B_j) = Mean(B_j^2) = q_j, Var(B_j) = q_j(1-q_j), j \in \{0,1\}$$

$$r_{12} = Cor(B_1, B_2) = \frac{p_{1,1} - q_1 q_2}{\sqrt{q_1(1 - q_1)} \sqrt{q_2(1 - q_2)}}, \ 0 < q_1, q_2 < 1$$

Remark 2. This expression of the correlation coefficient $r_{12} = Cor(B_1, B_2)$ does not depend on the concrete values of the binary random variables B_1 and B_2 . For example, considering $B_1 \in \{a_1, b_1\} \neq \{0, 1\}$, $B_2 \in \{a_2, b_2\} \neq \{0, 1\}$ we obtain the same value for the indicator r_{12} .

Since $q_1 = p_{1,0} + p_{1,1}$ and $q_2 = p_{0,1} + p_{1,1}$ we prove easily

P2.3. If $p_{1,1} = q_1 q_2$ then we have also the following equalities

$$p_{0,1} = (1 - q_1)q_2$$
, $p_{1,0} = q_1(1 - q_2)$, $p_{0,0} = (1 - q_1)(1 - q_2)$

From P2.2 and P2.3 it results

P2.4. The binary 0-1 random variables B_1, B_2 are independent if and only if $r_{12} = Cor(B_1, B_2) = 0$.

Remark 3. The property P2.4 is not always true for an arbitrary continuous two component system $\underline{W} = (W_1, W_2)$.

Applying the propositions P2.1 and P2.2 we deduce the inequalities

P2.5.
$$Cor(B_1, B_2) \ge \frac{max\{0, q_1 + q_2 - 1\} - q_1 q_2}{\sqrt{q_1(1 - q_1)} \sqrt{q_2(1 - q_2)}}, \ 0 < q_1, q_2 < 1$$

$$Cor(B_{1},B_{2}) \leq \frac{min\{q_{1},q_{2}\} - q_{1}q_{2}}{\sqrt{q_{1}(1-q_{1})}\sqrt{q_{2}(1-q_{2})}}, \ 0 < q_{1},q_{2} < 1$$

The following properties are particular cases of the proposition P2.5.

P2.6. If
$$q_1 = q_2$$
 then $Cor(B_1, B_2) \le 1$
If $q_1 = 1 - q_2$ then $Cor(B_1, B_2) \ge -1$

Using the formulas

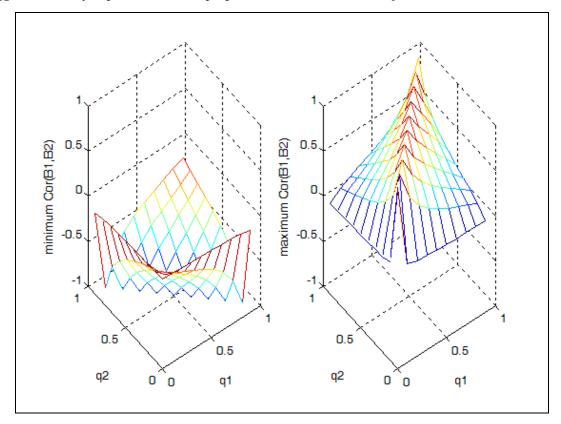
$$Cov(1-B_1, B_2) = -Cov(B_1, B_2)$$
. $Var(1-B_1, B_2) = Var(B_1, B_2)$

we can prove directly the equalities

P2.7.
$$Cor(1-B_1, B_2) = Cor(B_1, 1-B_2) = -Cor(B_1, B_2)$$

Graphic 1 presents us a suggestive image of the variation for the lower and upper bounds of $r_{12} = Cor(B_1, B_2)$ index depending on the marginal distributions indicators $0 < q_1, q_2 < 1$.

Remark 4. From the propositions P2.1-P2.7 we conclude that the discrete distribution of the system $\underline{B} = (B_1, B_2)$ is completely determined by the indices $0 < q_1, q_2 < 1$ which characterize the marginal distributions of \underline{B} together with the correlation coefficient $r_{12} = Cor(B_1, B_2)$, $-1 \le r_{12} \le 1$. But the parameters q_1, q_2, r_{12} are mutually dependent (see the properties P2.1 and P2.5 or *Graphic 1*).



Graphic 1. The lower and upper bounds of $r_{12} = Cor(B_1, B_2)$

3. Generate random observations from a binary system

Leisch, Weingessel and Hornik suggested in [5] the application of the general inverse method for discrete random vectors ([3], [4]) to generate arbitrary observations $(b_1, b_2, b_3, ..., b_k)$, $b_j \in \{0, 1\}$, for the system $\underline{B} = (B_1, B_2, B_3, ..., B_k)$.

The following algorithm *GDRV* produces $(b_1, b_2, b_3, ..., b_k)$ vectors, $b_j \in \{0, 1\}$, such that

$$Pr(B_1 = b_1, B_2 = b_2, B_3 = b_3, ..., B_k = b_k) = p_{b_1, b_2, b_3, ..., b_k}$$

where the probabilities $p_{i_1,i_2,i_3,\dots,i_k}$, $i_j \in \{0,1\}$, $1 \le j \le k$, define the binary 0-1 system \underline{B} .

Algorithm GDRV (Generating Discrete Random Vectors).

Step 0. Input: the probabilities $p_{i_1,i_2,i_3,...,i_k}$, $i_j \in \{0,1\}$, $1 \le j \le k$, with $p_{+,+,+,...,+} = 1$.

Step 1. Establish a one to function $h: \{1, 2, 3, ..., 2^k\} \rightarrow \{0, 1\}^k$

Step 2. Compute recurrently the sums

$$s_0 = 0$$

$$s_t = s_{t-1} + p_{h(t)}, \quad 1 \le t \le 2^k$$

Step 3. Generate a random variate u uniformly distributed on the interval (0,1]

Step 4. Find the index $1 \le t \le 2^k$ such that $u \in (s_{t-1}, s_t]$

Step 5. b = h(t)

Step 6. Output: b

Details regarding the theoretical justification of the generating procedure *GDRV* can be found in the books [3] and [4].

Remark 5. Applying algorithm *GDRV* we generated $n = 10^6$ random variates (b_1, b_2, b_3) from the binary system $\underline{B} = (B_1, B_2, B_3)$ defined by *Table 1*. For this case the frequences of the categories (i_1, i_2, i_3) , $i_j \in \{0, 1\}$, $1 \le j \le 3$, are given in *Table 2*. The validity of the algorithm *GDRV* is proved in part since the theoretical values and the empirical estimations of the probabilities p_{i_1, i_2, i_3} are very closed (compare the results from *Tables 1-2*).

Table 1. The theoretical distribution of the binary 0-1 system $\underline{B} = (B_1, B_2, B_3)$

p _{0,0,0}	$p_{0,0,1}$	P _{0,1,0}	p _{0,1,1}	$p_{1,0,0}$	$p_{1,0,1}$	<i>p</i> _{1,1,0}	<i>p</i> _{1.1.1}
0.050	0.200	0.100	0.150	0.100	0.050	0.050	0.300

Table 2. The frequences for the variates (b_1, b_2, b_3) obtained after 10^6 simulations with algorithm GDRV

(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
49763	200067	99951	149842	99672	49832	50332	300541

4. Systems with normal distributed components

Now we will discuss the case of a system $\underline{X} = (X_1, X_2, X_3, ..., X_k)$ where its components X_j , $1 \le j \le k$, are random variables with normal distributions.

By $X \sim Norm(\mu, \sigma^2)$ with $\mu \in R$, $\sigma > 0$, we understand that the random variable X is normal distributed where $Mean(X) = \mu$ and $Var(X) = \sigma^2$. We denote by $\Phi(x)$ the Laplace function, that is the cumulative distribution function for the random variable $Z \sim Norm(0, 1)$.

Remind some properties which will be applied in the subsequent.

P4.1. If
$$Z \sim Norm(0,1)$$
 and $X = \mu + \sigma Z$ with $\mu \in R$, $\sigma > 0$ then we have $X \sim Norm(\mu, \sigma^2)$.

P4.2 (Inverse method, [3], [4]). If the random variable U is uniformly distributed on the interval [0,1] and $Z = \Phi^{-1}(U)$ then $Z \sim Norm(0,1)$.

P4.3. For any
$$\mu_i \in R$$
, $\sigma_i > 0$, if $X_i \sim Norm(\mu_i, \sigma_i^2)$ and $Y = X_1 + X_2$ then $Y \sim Norm(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Discretization procedure DP. For any $a \in R$, $\mu \in R$, $\sigma > 0$ and $X \sim Norm(\mu, \sigma^2)$ we designate by $B_{X,a}$ the following binary 0-1 random variable

$$B_{X,a} = \begin{cases} 0 & , & when \ X < a \\ 1 & , & when \ X \ge a \end{cases}$$

Using the procedure *DP* we deduce by a direct calculus

P4.4. For any
$$X \sim Norm(\mu, \sigma^2)$$
 we have $Pr(B_{X,a} = 1) = 1 - \Phi((a - \mu)/\sigma)$

P4.5. For any $-1 \le c \le 1$, $Z_i \sim Norm(0,1)$, the standard normal random variables Z_1, Z_2 being independent, if

$$X = Z_1$$

$$Y = c Z_1 + \sqrt{1 - c^2} Z_2$$

then $X \sim Norm(0,1)$, $Y \sim Norm(0,1)$ and more Cor(X,Y) = c.

Remark 6. By using a normal random variable $X \sim Norm(\mu, \sigma^2)$ and a given bound $a \in R$ we build a binary 0-1 random variable $B_{X,a}$ such that

$$q = \Pr(B_{X.a} = 1) = 1 - \Phi((a - \mu)/\sigma)$$

(see the discretization procedure DP and Proposition P4.4). When $\mu=0$ and $\sigma=1$, the threshold $a \in R$ determine effectively the distribution of the discrete 0-1 random variable $B_{X,a}$.

5. A discretization process

Having a continuous normal distributed system $\underline{X} = (X_1, X_2, X_3, ..., X_k)$ and fixing some arbitrary thresholds $a_1, a_2, a_3, ..., a_k \in R$ we can obtain a binary 0-1 system $\underline{B} = (B_1, B_2, B_3, ..., B_k)$ with $B_j = B_{X_j, a_j}$, $1 \le j \le k$ (apply the procedure DP).

More, when $X_j \sim Norm(0,1)$, $1 \le j \le k$, then $q_j = \Pr(B_j = 1) = 1 - \Phi(a_j)$.

Obviously, in this last case, the correlation indicators $r_{ij} = Cor(B_i, B_j)$ and $c_{ij} = Cor(X_i, X_j)$, $1 \le i, j \le k$, have not equal values. More precisely, a correlation coefficient r_{ij} depends on the quantities c_{ij}, q_i, q_j . The effective relation between r_{ij} and c_{ij} indices will be established in the subsequent by applying a stochastic Monte Carlo simulation.

Remark 7. For an arbitrary $-1 \le c \le 1$, propositions P4.2 and P4.5 permit us to generate two dependent standard normal random variables X,Y having just the Pearson correlation coefficient Cor(X,Y) = c. We can apply *Proposition P4.2* (the inverse method, [3], [4]) to generate independent $Z_i \sim Norm(0,1)$ random variables which are used by *Proposition P4.5*.

Now, keeping all the previous notations, we will suggest a Monte Carlo procedure MCRCC to establish the real ratios between he correlation coefficients $c_{ij} = Cor(X_i, X_j)$ and $r_{ij} = Cor(B_i, B_j)$.

Procedure MCRCC.

- Step 1. We generate random variates of volume n for a bidimensional random vector (X_1, X_2) with standard normal dependent marginals and $c_{12} = Cor(X_1, X_2)$, $-1 \le c_{12} \le 1$ (more details in *Remark* 7).
- Step 2. Knowing the marginal probabilities $-1 \le q_1, q_2 \le 1$, we specify the discretization thresholds, that is $a_1 = \Phi^{-1}(1-q_1)$, $a_2 = \Phi^{-1}(1-q_2)$.
- Step 3. We obtain 0-1 binary samples (b_1,b_2) from the random vector $\underline{B} = (B_i,B_j)$ considering the discretization procedure $B_1 = B_{X_1,a_1}$, $B_2 = B_{X_2,a_2}$ (algorithm DP).
- Step 4. Using the samples resulted for $\underline{B} = (B_i, B_j)$ we estimate the correlation coefficient $r_{12} = Cor(B_1, B_2)$.

The correlation values r_{12} from *Tables 3-5* were deduced by running the Monte Carlo algorithm *MCRCC* for samples having the volume $n = 10^7$.

c_{12}	-0.999	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4
η_{12}	-0.9714	-0.7129	-0.5906	-0.4938	-0.4099	-0.3335	-0.2621
c_{12}	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
η_{2}	-0.1940	-0.1282	-0.0637	0.0001	0.0638	0.1284	0.1943
c_{12}	0.4	0.5	0.6	0.7	0.8	0.9	0.999
r_{12}	0.2622	0.3333	0.4096	0.4937	0.5904	0.7129	0.9714

Table 3. $q_1 = q_2 = 0.5$, $n = 10^7$ **Monte Carlo simulations with MCRCC**

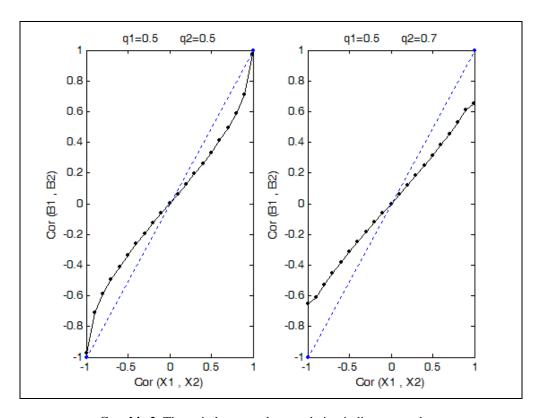
Table 4. $q_1 = 0.4$, $q_2 = 0.6$, $n = 10^7$ simulations with MCRCC

c ₁₂	-0.999	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4
r_{12}	-0.9713	-0.7106	-0.5872	-0.4902	-0.4060	-0.3298	-0.2588
c ₁₂	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
r_{12}	-0.1912	-0.1261	-0.0628	-0.0004	0.0616	0.1240	0.1869
c ₁₂	0.4	0.5	0.6	0.7	0.8	0.9	0.999
r ₁₂	0.2512	0.3173	0.3861	0.4589	0.5364	0.6181	0.6667

c_{12}	-0.999	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4
r_{12}	-0.6546	-0.6091	-0.5293	-0.4529	-0.3809	-0.3125	-0.2472
c_{12}	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
712	-0.1838	-0.1219	-0.0608	-0.0002	0.0605	0.1214	0.1834
c_{12}	0.4	0.5	0.6	0.7	0.8	0.9	0.999
η2	0.2469	0.3124	0.3808	0.4530	0.5297	0.6091	0.6546

Table 5. $q_1 = 0.5, q_2 = 0.7$, $n = 10^7$ simulations with MCRCC

Remark 8. The differences between the correlation values $r_{12} = Cor(B_1, B_2)$ and $c_{12} = Cor(X_1, X_2)$ are sometimes considerable. Graphic 2 gives us a suggestive illustration of this aspect (compare the differences between the continuous and dotted curves).



Graphic 2. The ratio between the correlation indices r_{12} and c_{12}

Remark 9. We can use successively *Proposition P4.5* and the discretization procedure *DP* to simulate directly samples from a tree type binary systems. See, for example, the one level tree system depicted in *Figure 1, case 1.3*.

6. Concluding remarks

We discussed two algorithms to generate random variates for a binary system $\underline{B} = (B_1, B_2, B_3, ..., B_k)$ with k components.

The algorithm GDRV uses as inputs all the probabilities $p_{i_1,i_2,i_3,...,i_k}$, $i_j \in \{0,1\}$, $1 \le j \le k$, which characterize the binary system \underline{B} . It is not so easy to apply practically the procedure GDRV for systems \underline{B} which have a lot of components. In this case the quantity 2^k -1 of the input data for GDRV algorithm becomes extremely large.

For this reason is suggested a new other algorithm based on the discretization procedure DP to obtain arbitrary observations from \underline{B} . This procedure simulate better the real aspects. The correlation structure of a continuous system \underline{X} is inherited by the binary system \underline{B} resulted after a discretization process. The relation between the correlation coefficients $c_{12} = Cor(X_1, X_2)$ and $r_{12} = Cor(B_1, B_2)$ can be determined by applying MCRCC algorithm (see also $Graphic\ 2$).

References

- [1] Agresti, A., An introduction to categorical data analysis, John Wiley and Sons, New York, 1996.
- [2] Andersen, E.B., Introduction to the statistical analysis of categorical data, Springer, New York, 1997.
- [3] Devroye, L., Non-uniform random variate generation, Springer-Verlag, New York, 1986.
- [4] James E. Gentle, J.E., Random number generation and Monte Carlo methods, Springer Statistics and Computing, New York, (second edition), 2003.
- [5] Leisch, F., Weingessel, A., Hornik, K., "On the generation of correlated artificial binary data", Adaptive Information Systems and Modelling in Economics and Management Science, Working Paper Series SFD, no. 13, Vienna University of Economics, 1998.
- [6] Wasserman, S., Faust, K., Social network analysis: Methods and applications, Cambridge University Press, New York, 1998.