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Abstract

Often in practice the components Wj of a sociological or an economical system W take discrete 0-1 values. We talk
about how to generate arbitrary observations from a binary 0-1 system B when is known the multidimensional distribution
of the discrete random vector B. We also simulated a simplified structure of B given by the marginal distributions together
with the matrix of the correlation coefficients. Different properties of the systems W are presented too.
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1. Introduction

A general system w with k components Wy W, W, ...,W, is characterized by the features 2; of every
variable W; and the intensity c;; of the relation between any two components w; and Wj, 1<i,j<k.
Frequently in practice the relation among the elements of the subsystem {W; ,W;} is a symmetric one, that is
Cij =Cji.

The characteristic 4; of the component W; could be just the parameters which define the marginal
distribution of the random variable W;. In the following we will choose the Pearson correlation coefficient
Cor(W;,Wj) to measure the intensity Cjj of the relation which is present between the components w; and W; of

the system W . We mention here that in the literature there are known many other indicators to measure the
ratio among the elements W; and W; from w ( [1], [2], [6] ).

Figure 1 presents some kinds of systems W .

Many times in practice the system W has components W; with a normal distribution. Such a system will
be designated in the subsequent by X. For this particular case the system components X, 1< j<k, are

dependent normal random variables characterized by their means x; and their dispersions aJZ. So we will
take /1] =(,uj,0'j) and Cij =Cor(Xi,Xj), 1<i, j<k.

Another class from the systems W are binary 0-1 systems designated by B. The elements B;,B,, B3, ..., By
of the system B are binary dependent variables which take only the values 0 and 1. To make a distinction
between the systems B and X we will use the notation rj=Cor(B;,B;) in the discrete case and

cjj =Cor(X;, X ;) for the continuous normal marginals variant.

We mention here that the normal type system X is completely characterized by the set of the parameters
4i,0i,Cjj, 1<i< j<k, thatis k(k+3)/2 values ([3]) .
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But the multidimensional distribution of an arbitrary binary system B has more parameters. For this
reason, in opposition with the normal distributions case, we can not define a general binary 0-1 system B by

knowing only the values 4i o, fij, 1<i<j<k. More, in the discrete case of B, the variance ajz =Var(Bj)
depends on the mean 4 =Mean(Bj) . So, knowing only the marginals and the correlation matrix of B we lose

a lot of information which define the real multivariate discrete distribution of the system B. Some details
concerning the behavior of a binary system B will be given in the next section.

Casell. k=2 Casel.2. k=3
C12 Ci12
W, +—» W, W —» W,

"\ /°

Case 1.3. A one level tree system
Wi

Ci2 Cik

Ci3 C1a

W, W5 W5 Wi

Fig. 1. A system W with k components
We reveal a new other aspect which is present for sociological and economical systems too. So, the
individuals of a given population estimate the behaviour of each component w; from a continuous system W
by putting subjective marks.

In this approach a binary system B results from W when the marks take only 0 and 1 values. Hence, in
practice, we often approximate a continuous system W by a binary one, like B. In this case we must evaluate
the discretization error.

2. The binary 0-1 systems

The binary random vector B=(B;,B,,Bs,...,Bx) which takes only 0 and 1 values is completely
characterized by the probabilities Pi, i, i, ....i, » ij €{0,1}, 1< j<k, where

Pi, iy .ig,....i, = PT(Br=i1,By =ip,Bg =i, ....By =ik)

Obviously, Pii, is,....i, =0 forall indices ij €{0,1} and in addition

i=1 i,=1 i3=1 i =1

D> D> X Pinigigs iy =1 (1

i;=0 i,=0 i;=0 i, =0

To simplify our expose, for any i; €{0,1}, we will use the notation
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Piy, iy i endie = Pig, iy g, 001, TP i LT

So, the equality (1) could be also written in a shorter formas p, , , =1

The marginal distributions of the random vector B are defined only by the probabilities q; =Pr(B; =1),
1<j<k.

Choosing, for example, the component B, we deduce

Pr(B1=0)=p0++,..+=1-P1++ . +=1-Pr(B=1)=1-q

Remark 1. Since the distribution of the system B=(B;,B,,Bs,...,By) is determined by the probabilities
Pi, i, is,...i, With the restriction (1) we conclude that a general binary 0-1 system B with k components is

defined by 2 -1 parameters.

Now we will enumerate some properties of a binary B = (B;,B,) system which has only two components.
We remind that the distribution of an arbitrary 0-1 binary vector B =(By,B,) IS given by the probabilities
pi,j =Pr(By=i,By =j) where i,je{0,1} and p, , =1

In this case ¢y = p; . =Pr(B;=1) , q; = p, 1 =Pr(B; =1) , 0<qy,0; <1 and therefore

Pro=0O1— P11 Po1=92—-P11 Poo =l+p1-01-02
Hence we have the inequalities

pp 1 Max{0, 0y +0qp —1}<min{a;, a2}

After a straightforward calculus we obtain the relations

Mean(B;) = Mean(BJZ) =qj Var(Bj)=qj1-q;j)

p2.2 , 1€{0,1}

P11 —d192
Vo (-ay) a2 A-a3) 0<qy,0p <1

Mo ZCOF(Bl, Bz) =

Remark 2. This expression of the correlation coefficient r;, = Cor(B;,B,) does not depend on the concrete
values of the binary random variables B, and B,. For example, considering B;e{a;.b}={0,1},
B, e{a, , b, }={0,1} we obtain the same value for the indicator r,.

Since q; = p1o+ P and gy = pgg + Pr1 We prove easily
P2.3.If p; =qd; then we have also the following equalities
Po1=010-01)d2 Pyo=01d-0d2) Poo=01-a)ld—d2)

From P2.2 and P2.3 it results
P2.4. The binary 0-1 random variables By, B, are independent if and only if r,, =Cor(B;,B,) =0.

Remark 3. The property P2.4 is not always true for an arbitrary continuous two component system
W =Wy, Wp).

Applying the propositions P2.1 and P2.2 we deduce the inequalities

P2.5. Cor(By,By)> M40 G2 ~13-® T2 0<q,q, <1
Jor (L-a) oz (L-d2)
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min{d; , d2 }- 01 dp
o1 (- 0) /a2 @A-02) 0<0y,qp <1

Cor(Bl,Bz)s\/

The following properties are particular cases of the proposition P2.5.
P2.6. If 9792 then COT(B1B2) <1
If G =1-0qy then Cor(B,By)>-1
Using the formulas
Cov(l-B4,By)=—Cov(By,By) , Var(1-B;,B,) =Var(B,B5)
we can prove directly the equalities

P27 Cor(l-By,By)=Cor(B;,1-B,)=-Cor(B;,B,)

Graphic 1 presents us a suggestive image of the variation for the lower and upper bounds of
o =Cor(By,By) index depending on the marginal distributions indicators 0<q;,q, <1.

Remark 4. From the propositions P2.1-P2.7 we conclude that the discrete distribution of the system
B=(B;,By) is completely determined by the indices 0<a;.0» <1 which characterize the marginal

distributions of B together with the correlation coefficient rno =Cor(B;,B,), —1<r, <1. But the parameters
01.02,12 are mutually dependent (see the properties P2.1 and P2.5 or Graphic 1).

minimum CorB1,B2)
Q2
maximum CorB1,B2)

Graphic 1. The lower and upper bounds of r;, =Cor(B;,B5)
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3. Generate random observations from a binary system

Leisch, Weingessel and Hornik suggested in [5] the application of the general inverse method for discrete
random vectors ( [3], [4] ) to generate arbitrary observations (by,by,bs,....bc), bj €{0,1}, for the system

B=(By,B,,Bg3,...,By).

The following algorithm GDRYV produces (by,by,bs, ...,by) vectors, b; e{0,1}, such that

Pr(By =by,By =by, B3 =bg, ....Bx =bx) = Py, b, b,, ....0,

where the probabilities p; ;, i. . » ij €{0,1}, 1< j<k, define the binary 0-1 system B.

Algorithm GDRYV ( Generating Discrete Random Vectors ).

Step 0. Input : the probabilities Pi, i, i, ....i, » ij €{0,1}, 1< j<k,with p, , , =1.

Step 1. Establish a one to function h:{1,2,3,...,2¢} {0, 13X

Step 2. Compute recurrently the sums

So=0

St =St-1+ Ph(t)r 1<t< 2k

Step 3. Generate a random variate u uniformly distributed on the interval (0,1]

Step 4. Find the index 1<t <2* such that ue(s;_;,st]

Step 5. b=h(t)
Step 6. Output: b

Details regarding the theoretical justification of the generating procedure GDRV can be found in the books

[3] and [4].

Remark 5. Applying algorithm GDRV we generated n=10° random variates (b;,b,,bs) from the binary

system B = (By, B, B3) defined by Table 1. For this case the frequences of the categories (iy,iz,i3), ij €{0,1},

1< j<3, are given in Table 2. The validity of the algorithm GDRV is proved in part since the theoretical

values and the empirical estimations of the probabilities p; ;, ;. are very closed ( compare the results from

Tables 1-2).

Table 1. The theoretical distribution of the binary 0-1 system B = (B,,B,,B3)

Po,0,0

Po,01

Po,1,0

Po11

P1,0,0

P10.1

P10

Pr11

0.050

0.200

0.100

0.150

0.100

0.050

0.050

0.300

Table 2. The frequences for the variates (b;,b,,bs) obtained after 10° simulations with algorithm GDRV

(0,0,0)

(0,0,2)

(0,1,0)

0,11

(1,0,0)

4,0,2)

(11,0)

11

49763

200067

99951

149842

99672

49832

50332

300541
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4. Systems with normal distributed components
Now we will discuss the case of a system X =(Xy,X3,X3,...,Xx) where its components X ;, 1< j<k, are
random variables with normal distributions.

By X ~ Norm(u,o2) with ueR, o>0, we understand that the random variable X is normal distributed

where Mean(X)=x and Var(X)=c2. We denote by @(x) the Laplace function, that is the cumulative
distribution function for the random variable Z ~ Norm(0,1).

Remind some properties which will be applied in the subsequent.

P41, If 2 Norm0.0) gng X =#+0Z with #<R -0 then we have X ~ Norm(u,o%)

P4.2 ( Inverse method, [3], [4] ). If the random variable U is uniformly distributed on the interval [0,1]
and Z = ~1(U) then Z ~ Norm(0,1).

P4.3.Forany u R, oj >0, if Xj ~Norm(yj,o?) and Y = X; + X, then Y ~ Norm(uy + up, o +03).

Discretization procedure DP. For any aeR, ueR, o>0 and x ~Norm(u,c?) We designate by By , the
following binary 0-1 random variable

0 , when X<a
Bx,a:
1 , when X>a

Using the procedure DP we deduce by a direct calculus

P4.4. For any X ~ Norm(u,c2) we have Pr(By , =1) =1-®((a- )/ o)

P4.5. Forany -1<c<1, Z; ~ Norm(0,1), the standard normal random variables z;,z, being independent, if
X =2

Y=czy+V1-c? 7,

then X ~ Norm(0,1) Y ~ Norm(0,1) and more Cor(X,Y)=c

Remark 6. By using a normal random variable X ~ Norm(z,o2) and a given bound aeR we build a
binary 0-1 random variable By , such that

q=Pr(Bx.a=1)=1-®((a-x)/0)

( see the discretization procedure DP and Proposition P4.4 ). When . =0 and o =1, the threshold a<R
determine effectively the distribution of the discrete 0-1 random variable By ;.

5. A discretization process

Having a continuous normal distributed system X =(Xi,X;,X3,...,Xy) and fixing some arbitrary
thresholds aj,ap,a3,...,a¢ eR we can obtain a binary 0-1 system B=(B,B,,Bs,...,.Bx) With B =Bx .a,

1< j<k (apply the procedure DP ).

More, when X ~Norm(0,1), 1< j<k, then q; =Pr(Bj =1) =1-d(aj).
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Obviously, in this last case, the correlation indicators rj =Cor(B;,B;j) and c¢jj =Cor(X;,X;), 1<i,j<k,
have not equal values. More precisely, a correlation coefficient r; depends on the quantities c;j,q;,q;. The
effective relation between r; and c;; indices will be established in the subsequent by applying a stochastic
Monte Carlo simulation.

Remark 7. For an arbitrary —-1<c<1, propositions P4.2 and P4.5 permit us to generate two dependent
standard normal random variables X,Y having just the Pearson correlation coefficient Cor(X,Y)=c. We can

apply Proposition P4.2 ( the inverse method, [3], [4] ) to generate independent Z; ~Norm(0,1) random
variables which are used by Proposition P4.5.

Now, keeping all the previous notations, we will suggest a Monte Carlo procedure MCRCC to establish the
real ratios between he correlation coefficients c;; =Cor(X;, X ) and r;j =Cor(B;,B;).

Procedure MCRCC.

Step 1. We generate random variates of volume n for a bidimensional random vector (X1, X3) with
standard normal dependent marginals and c;, =Cor(Xy,X,), —1<¢yp <1 (' more details in Remark 7).

Step 2. Knowing the marginal probabilities -1<q;,q, <1, we specify the discretization thresholds,
thatis a =@ (1-q), ay =d1(1-qp).
Step 3. We obtain 0-1 binary samples (b;,b,) from the random vector B =(B;,B;j) considering the

discretization procedure B; =By o , B, =Bx, 4, (algorithm DP).

Step 4. Using the samples resulted for B=(B;,B;) we estimate the correlation coefficient
o =Cor(By,By).

The correlation values r;, from Tables 3-5 were deduced by running the Monte Carlo algorithm MCRCC

for samples having the volume n ~10",

Table 3. g, =9, =05, n=10" Monte Carlo simulations with MCRCC

C12 -0.999 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4
n2 -0.9714 | -0.7129 | -0.5906 | -0.4938 | -0.4099 | -0.3335 | -0.2621
C12 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

2 -0.1940 | -0.1282 | -0.0637 | 0.0001 0.0638 0.1284 0.1943

C12 0.4 0.5 0.6 0.7 0.8 0.9 0.999

M2 0.2622 0.3333 0.4096 0.4937 0.5904 0.7129 0.9714

Table 4. g, =04, g, =0.6, n=10" simulations with MCRCC

C12 -0.999 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4
n2 -0.9713 | -0.7106 | -0.5872 | -0.4902 | -0.4060 | -0.3298 | -0.2588
C12 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
n2 -0.1912 | -0.1261 | -0.0628 | -0.0004 | 0.0616 0.1240 0.1869
C12 0.4 05 0.6 0.7 0.8 0.9 0.999
M2 0.2512 0.3173 0.3861 0.4589 0.5364 0.6181 0.6667
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Table 5. g,=0.5,q, =0.7 , n=10" simulations with MCRCC

C12 -0.999 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4
M2 -0.6546 | -0.6091 | -0.5293 | -0.4529 | -0.3809 | -0.3125 | -0.2472
C12 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
2 -0.1838 | -0.1219 | -0.0608 | -0.0002 | 0.0605 0.1214 0.1834
C12 0.4 0.5 0.6 0.7 0.8 0.9 0.999
2 0.2469 0.3124 0.3808 0.4530 0.5297 0.6091 0.6546

Remark 8. The differences between the correlation values r, =Cor(B;,B,) and ¢, =Cor(Xq,X,) are

sometimes considerable. Graphic 2 gives us a suggestive illustration of this aspect ( compare the differences
between the continuous and dotted curves ).

nel i

nel o

04} K 1

0.2} r,’ .

Cor B1 , B2)
Cor B1, B2)

-1 ] 1 1 1 -1 1 1 1
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1

Cor (X1, X2) Cor (X1, X2)

Graphic 2. The ratio between the correlation indices r;, and ¢,

Remark 9. We can use successively Proposition P4.5 and the discretization procedure DP to simulate
directly samples from a tree type binary systems. See, for example, the one level tree system depicted in
Figure 1, case 1.3.

6. Concluding remarks
We discussed two algorithms to generate random variates for a binary system B =(B;,B;,Bs,...,By) with k
components.

The algorithm GDRV uses as inputs all the probabilities p;j ije{0,1}, 1<j<k, which

TS

characterize the binary system B. It is not so easy to apply practically the procedure GDRV for systems B

which have a lot of components. In this case the quantity 2K_1 of the input data for GDRV algorithm
becomes extremely large.
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For this reason is suggested a new other algorithm based on the discretization procedure DP to obtain
arbitrary observations from B. This procedure simulate better the real aspects. The correlation structure of a

continuous system X is inherited by the binary system B resulted after a discretization process. The relation
between the correlation coefficients ¢y, =Cor(Xq,X5) and r, =Cor(By,By) can be determined by applying
MCRCC algorithm ( see also Graphic 2).
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