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Abstract 
In the wake of electric power system transition towards smart grids, and the adoption of the electric market schemes, 

electric utilities are facing the need of a better load profiles understanding for their customers. In this work, some key 

objectives were addresses, such as definition of the mathematical model for calculating the hourly energy specific, 

identification of the three target groups for users who have developed consumer profiles, definition of the two types of 

significant load and assessment of the impact of using consumer profiles on users.  

Keywords: Distribution system, electricity market, load profile. 

1. Introduction 

In the free market of electricity, electricity suppliers need to have information on the customer electricity 

consumption evolution in order to buy sufficient energy from the wholesale market to cover the hourly 

consumption at negotiated prices and average periods [1-15]. 

In the absence of such information, the service provider will be obliged to purchase the electricity wholesale 

market. The quantities of purchased energy may be smaller than its customer’s needs – in which case, the deficit 

will be covered by purchasing the missing quantities in the market for next day or balancing market at higher 

prices. Where the supplier will buy power on the wholesale market more energy than is necessary for the 

customer, will be forced to sell the surplus, balancing market at a price lower than that with which the energy 

was purchased [16-36]. 

For those customers that have implemented smart metering devices (which can record consumption at 

different time intervals, memorize the values and remotely transmit the information), this consumption variation 

is known [37-42]. For customers that have not installed such intelligent devices, it requires a method by which 

the total electricity consumption over a period of time to be assigned to time slots [43,44]. Typically, the issue of 

the load curve profile determination is posed for small users and for users. In their case, the installation of meters 

with registration of hourly electricity consumption is economically unjustified [45,46]. 

2. Operational and functional requirements for accurate load profiling – analytical assessment 

Average daily consumption which is scheduled by using weights specified in a table which contains data 

relating to consumer profile (differentiated for working day and non-working day) is defined from the relations 

detailed in sequel.  
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2.1 Monthly energy aggregation 

For an average month, some using the data presented in a table that contains the results of the measurements 

of energy for all hourly intervals (curves, as the average consumer used to establish the data measured consumer 

profile): 

ZDWDWD
NqQ *

      (1) 
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      (3) 

where:  

WD
Q = amount of energy distributed on working days for a month, according to the measured values;  

NWDQ = amount of energy distributed in non-working days for a month, according to the measured values;  

WDq  = average daily consumption associated with any working days for a month, according to the values 

given in the table containing the results of the measurements of energy for all hourly intervals;  

NWDq  = average daily consumption associated with any non-working days for a month, according to the 

values given in the table containing the results of the measurements of energy for all hourly intervals;  

Q = energy distributed within one month according to measured values  

NWD = number of working days in the month;  

NNWD = number of non-working days in the month  

2.2 Evaluation of energy weights  
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where:  

PWD, PNWD is the weight of the energy distributed for one month with respect to working days/holidays, 

determined accordingly to the measured values which underline the consumer profile, according to the table that 

contains the results of the measurements of energy for all hourly intervals;  

2.3 Monthly energy calculation 

Energy distributed in the settlement month, differentiated according to type of day (working/nonworking) 

shall be established according to the following relationship: 

WDmonthmonthWD
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     (6) 

NWDmonthmonthNWD
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where: 

Qmonth = the amount of energy distributed in the settlement,  
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2.4 Monthly calculation of energy weights 

Daily quantities of energy distributed in paying month must be approved according to profile schedule (using 

the weights shown in a table containing data relating to consumer profile) is determined according to the 

relationship presented in sequel:  
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      (10) 

2.5 Daily/hourly energy calculation 

Monthly representation of quantities of energy will be distributed on the basis of the approved profile on 

differentiated working days / non-working days, according to the following relationship:  

a). working day 

*WDhourWD QQ 
      (11) 

where: 

QhourrWD = energy distributed according to a time interval for a working day;  

γ = represents the percentage determined for the characteristic profile of working days, for a given time 

interval (according to the table containing data relating to consumer profile)  

b). non-working day 

*NWDhourNWD QQ 
      (12) 

where: 

QhourNWD = energy distributed according with a time interval for a working day;  

η = is the percentage determined for the characteristic profile of working day, for a given time interval 

(according to the table containing the data relating to consumer profile). 

Hourly quantities are expressed in, MWh with 3 decimals, so that the difference between the amount of 

energy distributed monthly and the sum of hourly energies to be less than 1 kWh. 

3. System application 

The question of determining the load curve profile is very economically-efficient for small users and for 

users. Under these circumstances, the establishment of hourly values of energy associated with a supplier can 

realize, for each point of consumption for providing hourly consumption by spreading recorded on a calculation 

based on a consumer profile.  

Within current paper, the following consumers were took under consideration: 

1. Fuel stations 

2. Small businesses without cooling 

3. Small businesses with cooling 

4. Schools 

3.1 Fuel stations 

This illustrates loading profile contributions such as lighting, cooling, ventilation and other tasks performed 

throughout the day. Evaluation of total energy consumption in energy will show a rapid increase during the 
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morning because of the transitional arrangements of the receivers. Once the systems are started, the demand is 

relatively constant throughout the day. 

 

Fig. 1. Load curves for fuel stations 
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Table 1 Measurements results 

Table 2 Data for fuel stations (hourly weights of 

energy consume) 

Average consume curve [MWh] 

Interval Interval Interval 

00:00:00 0.004292661 0.00403134 

01:00:00 0.004293374 0.004025699 

02:00:00 0.00431324 0.004067442 

03:00:00 0.004339073 0.004211893 

04:00:00 0.0043308 0.004205129 

05:00:00 0.004474134 0.004150411 

06:00:00 0.004486111 0.004113899 

07:00:00 0.004406811 0.00390353 

08:00:00 0.006805816 0.003982609 

09:00:00 0.011768425 0.004847129 

10:00:00 0.012067337 0.004919832 

11:00:00 0.012192786 0.004936485 

12:00:00 0.012029691 0.004917517 

13:00:00 0.012074995 0.004672229 

14:00:00 0.012670302 0.005389044 

15:00:00 0.012493785 0.005340656 

16:00:00 0.012752344 0.005375426 

17:00:00 0.012025259 0.005502721 

18:00:00 0.009438688 0.005893038 

19:00:00 0.006964362 0.005928727 

20:00:00 0.004961839 0.004721399 

21:00:00 0.00419137 0.004045598 

22:00:00 0.004175531 0.004062494 

23:00:00 0.004159727 0.004051396 

QWD 0.185708461  

QNWD  0.111295642 
 

 

Consume profile 

Mean WD [%] Mean NWD[%] 

00:00:00 2.311505444 3.622190662 

01:00:00 2.311889189 3.617122116 

02:00:00 2.322586538 3.654628397 

03:00:00 2.336497257 3.784418488 

04:00:00 2.332042219 3.778340724 

05:00:00 2.40922455 3.729176304 

06:00:00 2.415674017 3.69636986 

07:00:00 2.372972836 3.507352062 

08:00:00 3.664785357 3.578405416 

09:00:00 6.337043236 4.355183359 

10:00:00 6.498000695 4.42050712 

11:00:00 6.565552497 4.435469842 

12:00:00 6.477728882 4.418427075 

13:00:00 6.502124331 4.198033707 

14:00:00 6.82268434 4.842098201 

15:00:00 6.727633712 4.798620693 

16:00:00 6.866862061 4.82986245 

17:00:00 6.475342473 4.944237998 

18:00:00 5.082529611 5.294940665 

19:00:00 3.750158578 5.327007124 

20:00:00 2.671843172 4.242213655 

21:00:00 2.256962489 3.635000816 

22:00:00 2.248433386 3.650182388 

23:00:00 2.239923131 3.640210877 
 

3.2 Small businesses without cooling 

This illustrates loading profile contributions such as lighting, cooling, ventilation and other tasks performed 

throughout the day. Evaluation of total energy consumption in energy will show a rapid increase during the 
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morning because of the transitional arrangements of the receivers. Once the systems are started, the demand is 

relatively constant throughout the day. 

 

Fig. 2. Load curves for SBwC (WD and NWD) Small businesses with cooling 

Minimum and maximum limits presents a limited variation of about 2%, which indicates the uniformity of 

type SBC users consumption. The load curve flattening we can say that it has a high value which indicates that in 

the case of SBC have a flat load curve. 

 

Fig. 3. Load curves for SBC (WD and NWD) 
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Fig. 4. Load curves for Schools 

The overall purpose of this section is to reach the final economic target of fully describe the customers’ 

behavior by exactly quantifying their consumption patterns, starting from monthly energy aggregation. 

4. Conclusions 

In this work, some key objectives were completed, such as definition of the mathematical model for 

calculating the hourly energy specific, identification of the three target groups for users who have developed 

consumer profiles, definition of the two types of significant load and assessment of the impact of using consumer 

profiles on users 

Also, throughout the whole paper, the authors have tried to create a framework that can be used later by the 

beneficiary for mathematical models. In sequel are listed the obstacles in the face of improving energy 

distribution activity and the action required to be taken with a view to the removal of obstacles. 

There are a few issues that pose a serious threat to the future development of electric distribution system. A 

brief collection of these issues are presented in sequel: 

 Lack of investment in facilities for low voltage networks, a significant proportion of the consumers having old 

installations with access to conductors. 

 Poor status of the electric distribution power system, namely network areas with great lengths, LV overload, with 

inadequate insulation. 

 Action to raise awareness of the extent of the economic agents who work with very low loads. Actions required in 

order to mitigate the upper-mentioned issues: 

 Continuance of control actions for faulty consumers of electrical energy,  

 Recovery and restoration of the electric power system is compulsory for reaching the goal of having a secure 

system 

 Development of electric distribution systems using economic-based strategies 
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