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Abstract 
The ability to predict the wind speed has an important role for renewable energy industry which relies on wind speed 

forecasts in order to calculate the power a wind farm can produce in an area. There are several well-known methods to 

predict wind speed, but in this paper we focus on short-term wind forecasting using Markov chains.  

Often gaps can be found in the time series of the wind speed measurements and repeating the measurements is usually 

not a valid option. In this study it is shown that using Markov chains these gaps from the time series can be filled (they can 

be generated in an efficient way), but only when the missing data is for a short period of time. Also, the developed Matlab 

programms that are used in the case study, are included in the paper beeing presented and commented by the authors.  

In the case study data from a wind farm in Italy is used. The available data are as average wind speed at an interval of 

10 minutes in the time period 11/23/2005 - 4/27/2006. 

Keywords: Markov chain, wind speed, Matlab, Chapman-Kolmogorov, forecast 

1. Introduction and literature review 

The market of wind energy is under development in the last years and many wind turbines installations are to 

be constructed in the following period, beeing considered a driver of the economy. This rapid development of the 

wind energy area is also due to scientifical reseach studies. Among the challenges in the domain are the 

understanding of the wind speed and applying the gained knowledge in the industry. Knowing the wind behavior 

in certain wind farms is extremely important for today's power systems, especially in the programming and 

operating means, wind power becoming an important part of future energy sources. 

Futher there will be presented some of the existing models that were studied in modeling of  wind speed and a 

case study on one of these models will be done. 

Wind, solar, and biomass are three emerging renewable sources of energy, renewable energy replaceing 

conventional fuels. One of the benefits of this type of energy is the reduction of the  production of CO2 in the 

atmosphere. It can be said that global warming is also among the reasons for searching of alternative sources of 

energy production due to the fact that conventional sources are rich in CO2 production. 

This type of renewable energy can be achieved by installing wind turbines in the areas where the wind is 

suitable. For this reason, forecasting and analysis of wind speed can lead to the decision whether a wind turbine 

for a home (micro generation) is suitable or not, or whether to invest or not into so called wind farms which can 

fill the need of energy.  

The problem of forecasting wind speed is quite known and has been dealt a lot in the literature. Among the 

models used in forecasting of wind speed are: Weibull and Rayleigh distribution (Aksoy 2005; Odo 2012; 

Ahmad 2009; van Donk 2005; Philippopoulos 2009; Ahmeda 2012), the AR (1) and AR (2) models (Aksoy 

2005), the ARMA models (Philippopoulos 2009), Markov chains (Brokish 2009, Song 2011, Chen 2009, Aksoy 

2005), wavelet transformation (Aksoy 2005), the Mycielski algorithm (Hocaoğlu 2009; Fidan 2012) and Weibull 

distribution (Akiner 2008; Ruigang 2011; Zuwei 2008; Isaic-Maniu 1983). 

In this paper we propose a short-term simulation of wind speed using Markov chains, namely transition 

matrices. In the case study it will be noticed that this technique is useful to generate data which is very close to 

the actual values, which makes us think that Markov chains can be used to fill gaps in the data series, when these 

http://en.wikipedia.org/wiki/Wind_power
http://en.wikipedia.org/wiki/Solar_power
http://en.wikipedia.org/wiki/Biomass
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gaps are on a short-term. Often, wind speed data sets from wind farms have gaps in measurements due to various 

reasons. 

2. Wind speed forecasts using Markov chains (transition matrices) 

Next, we present some theoretical concepts that are used in the case study, namely the Markov chains and the 

Chapman-Kolmogorov equations. The method of use of Markov chains in order to estimate wind speed will be 

presented and also, a possible procedure of simulation of the wind speed will be described. 

2.1. Markov chains 

Definition 2.1. Let {X𝑛, 𝑛 = 0,1,2, ⋯ , }
 
be a stochastic process that takes a finite number of possible values. 

If the set of possible values is not otherwise stated, it will be indicated by a number of non-negative integer 

values {0,1,2, ⋯ }. If X𝑛 = 𝑖, this process is in state 𝑖
 
at the time

 
𝑛. We assume that every time the process is in 

state 𝑖
 
, then it is a fixed probability

 
𝑃𝑖𝑗 that its next value to be in state 𝑗. 

Note 2.1.i. Thus we assume that: 

𝑃{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, ⋯ , 𝑋1 = 𝑖1, 𝑋0 = 𝑖0} = 𝑃𝑖𝑗  (1) 

for all states 𝑖0, 𝑖1, ⋯, 𝑖𝑛−1, 𝑖, 𝑗 and all 𝑛 ≥ 0. Such a stochastic process is known as a Markov chain. 

Note 2.1.ii. Equation 1 can be interpreted to say that a Markov chain distribution in the future conditional 

status X𝑛+1, being given all the states in the past X0, X1,⋯, X𝑛−1 and the present state X𝑛 is independent of past 

states and depends only on the today’s condition. 

The value of 𝑃𝑖𝑗 is the probability that a process will be in state 𝑖 at the next transition will be in state 𝑗. Since 

probabilities are non-negative and because the process must make a transition into a state we have 

𝑃𝑖𝑗 ≥ 0,   𝑖, 𝑗 ≥ 0;    ∑ 𝑃𝑖𝑗 = 1

∞

𝑗=0

,    𝑖 = 0,1, ⋯ 

𝐏 indicates the one-step transition matrix, or otherwise the matrix of order 1 of the Markov chain, of 

𝑃𝑖𝑗  probabilities, thus 

𝐏 = ‖
‖

𝑃00 𝑃01 𝑃02 ⋯
𝑃10 𝑃11 𝑃12 ⋯

⋮ ⋮ ⋮ ⋮
𝑃𝑖0 𝑃𝑖1 𝑃𝑖2 ⋯

⋮ ⋮ ⋮ ⋮

‖
‖ 

2.2. Chapman-Kolmogorov equations 

We have already defined the probabilities 𝑃𝑖𝑗 of one-step transition. We now define the probabilities 𝑃𝑖𝑗
𝑛 of 𝑛-

step transition. 

Definition 2.2. 𝑃𝑖𝑗
𝑛 is the probability that a process in the state 𝑖, will be in state 𝑗 after 𝑛 additional transitions. 

Meaning 

𝑃𝑖𝑗
𝑛 = 𝑃{𝑋𝑛+𝑘 = 𝑗|𝑋𝑘 = 𝑖},   𝑛 ≥ 0, 𝑖, 𝑗 ≥ 0 

Naturally 𝑃𝑖𝑗
1 = 𝑃𝑖𝑗. 

Note 2.2.i. The Chapman-Kolmogorov equations, are giving a method to calculate these 𝑛-steps transition 

probabilities. These equations are: 

𝑃𝑖𝑗
𝑛+𝑚 = ∑ 𝑃𝑖𝑘

𝑛 𝑃𝑘𝑗
𝑚∞

𝑘=0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, 𝑚 ≥ 0, 𝑎𝑙𝑙 𝑖, 𝑗  (2) 
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and are more easily understood by observing that 𝑃𝑖𝑘
𝑛 𝑃𝑘𝑗

𝑚 is the probability that a process that is in its original 

state 𝑖 will arrive in state 𝑗 in 𝑛 + 𝑚 transitions through a path that will lead him to state 𝑘 to transition 𝑛. 

Therefore, gathering all the 𝑘 intermediate states, the likelihood that the process is in state 𝑗 after 𝑛 + 𝑚 

transitions will be obtained.  Formally we have 

𝑃𝑖𝑗
𝑛+𝑚 = 𝑃{𝑋𝑛+𝑚 = 𝑗|𝑋0 = 𝑖} 

            = ∑ 𝑃{𝑋𝑛+𝑚 = 𝑗, 𝑋𝑛 = 𝑘|𝑋0 = 𝑖}

∞

𝑘=0

 

            =  ∑ 𝑃{𝑋𝑛+𝑚 = 𝑗|𝑋𝑛 = 𝑘, 𝑋0 = 𝑖}

∞

𝑘=0

𝑃{𝑋𝑛 = 𝑘|𝑋0 = 𝑖} 

           = ∑ 𝑃𝑘𝑗
𝑚𝑃𝑖𝑘

𝑛

∞

𝑘=0

 

Note 2.2.ii. If we note 𝐏(𝑛) as being the 𝑛-steps transition matrix with the probabilities 𝑃𝑖𝑗
𝑛, then Equation 2 

can be rewritten as: 

𝐏(𝑛+𝑚) = 𝐏(𝑛) ∙ 𝐏(𝑚) 

Where the dot operator is multiplying matrices. Therefore, in particular, we will have: 

𝐏(2) = 𝐏(1) ∙ 𝐏(1) =  𝐏 ∙ 𝐏 = 𝐏𝟐 

and by induction 

𝐏(𝑛) = 𝐏(𝑛−1+1) =  𝐏𝐧−𝟏 ∙ 𝐏 = 𝐏𝐧 

Thus, the 𝑛-steps transition matrix can be obtained by multiplying the 𝐏 matrix with itself by 𝑛 times. Several 

times in this paper we will refer to the 𝑛-step transition matrix as the 𝑛-order matrix (Ross 2010). 

2.3. The use of Markov chains in modelling of the wind speed 

The determination of important statistical models for wind speed time series at different time periods is a huge 

point of interest for the wind power industry, in particular for optimal control of the wind turbines. Also 

important topics are: establishing of a sending schedule or programming the wind energy, designing and 

evaluating wind energy and so on. 

Time series data for wind speed can be obtained from different sources, such as weather forecasting stations 

or from wind turbines itself that are equipped with anemometers. 

Time series data set of wind speed may be noted as 𝑣𝑡 , 𝑡 = 0, 1, 2, ⋯ , 𝑇 where 𝑣𝑡 is the wind speed (discreet) 

at the time 𝑡, 𝑡 starting at 0 and ending in 𝑇. The total number of discrete values of the wind speed for a time 

series is 𝑇 + 1. 

Wind speed measurements are continuous values, but to be able to fit into an application of Markov chains, 𝑣𝑡 

is discreet and can take a finite number of possible states. 

Let us suppose that continuous wind speeds can be discretized in 𝑟 states, 𝑆𝑖, 𝑖 = 0, 1, 2, ⋯ , 𝑟. For example, 

𝑆1 state can be assigned for values of wind speed between 0 and 1 m/s. 

The method in which wind speeds are divided in discreet values of 𝑟 states, is highly dependent on the target 

application and other factors such as changes in wind speed or specifications of the turbine. In the literature often 

is used to make this division the range of speeds 𝑣𝑐𝑢𝑡−𝑖𝑛 and 𝑣𝑟𝑎𝑡𝑒𝑑. 
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The reason for this range is as follows: a turbine generates zero power as long as wind speed is between 0 and 

the cut-in speed. When the wind speed is higher than the rated speed, then the turbine will generate a set power 

(relatively constant), unless the wind is too strong and the wind speed exceeds the cut-out speed, moment that is 

equivalent with the turbine shutdown in order to protect it from potential damage. 

Based on the startup speed and the normal speed of the wind we could define the state 𝑆1 as being wind 

speeds that range from 0 to 𝑣𝑐𝑢𝑡−𝑖𝑛, meaning 0 ≤ 𝑣 ≤ 𝑣𝑐𝑢𝑡−𝑖𝑛. 𝑆𝑟 could be defined as a state comprising wind 

speed values greater or equal to 𝑣𝑟𝑎𝑡𝑒𝑑. Thus 𝑆2 and 𝑆𝑟−1 could be defined based on different classification 

schemes of wind speed. 

A simple way would be addressing speed range, Δ𝑣. Let Δ𝑣 = 1 𝑚/𝑠 be a range, then 𝑆2 is the state 

containing the following values 𝑣𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑐𝑢𝑡−𝑖𝑛 + 1. The states from 𝑆3 to 𝑆𝑟−1 could be defined in the 

same manner. In this case, the number of possible states is given by the interval Δ𝑣, 𝑣𝑐𝑢𝑡−𝑖𝑛 and 𝑣𝑟𝑎𝑡𝑒𝑑. 

For an application of Markov chains with wind speed time series data, the one step matrix P contains 

probabilities that wind speeds in the state 𝑆𝑖 will be in state 𝑆𝑗 at the next sampling time. The one step transition 

matrix (order 1) P can be represented as follows: 

𝑃 = (
𝑃11 ⋯ 𝑃1𝑟

⋮ ⋱ ⋮
𝑃𝑟1 ⋯ 𝑃𝑟𝑟

) 

each entry of the matrix is a probability and satisfies the condition listed earlier in the definition of Markov 

chains. It is interesting to see the two step matrix of probabilities, because knowledge of future wind speeds is 

very important for the wind industry. The two step matrix tells us that a process that is in state 𝑆𝑖 will be in state 

𝑆𝑗 after two additional transitions. In practice, long-term wind forecast with high accuracy can be a very difficult 

task due to the stochastic nature of the wind. 

According to the Chapman-Kolmogorov equations previously presented, the two step matrix P2 can be easily 

calculated, multiplying the matrix P with itself. Similarly, the three step matrix P3 can be easily calculated. 

Being given a time series of the wind speed 𝑣𝑡(𝑡 = 0, 1,2, ⋯ , 𝑇), estimating the transition matrix of a matrix 

of order 1 is a direct process. Generally, let 𝑛𝑖𝑗 be the number of speeds that are in state 𝑆𝑖 during the time period 

𝑡 (meaning 𝑣𝑡 = 𝑆𝑖) and in state 𝑆𝑗 during the time period 𝑡 + 1 (meaning 𝑣𝑡+1 = 𝑆𝑖), for 𝑡 between 0 and 𝑇 −

1.  

Note 2.3.i. Then the transition probabilities can be estimated as 

𝑝𝑖𝑗 = 𝑛𝑖𝑗  ∑ 𝑛𝑖𝑗
𝑟
𝑗=1⁄     (3) 

it is known the fact that this equation (3) it is a maximum likelihood estimator that tends towards zero when 

the sample is very large. 

Similarly, the transition matrix of 2
nd

 order can be estimated using the same process described above, only 

this time 𝑛𝑖𝑗 is the number of speeds that are in state 𝑆𝑖 in the time period 𝑡 (meaning 𝑣𝑡 = 𝑆𝑖) and are in state 𝑆𝑗 

in the time period 𝑡 + 2 (meaning 𝑣𝑡+2 = 𝑆𝑖), for 𝑡 between 0 and 𝑇 − 2. The process for estimating the 

transition matrix of the order 𝑛 can be deduced. 

2.4. Procedure to simulate wind forecast 

A procedure to generate an average of a simulated hour of a wind speed time series is described below. 

The first step is to calculate the one step transition matrix. This matrix is a Markov chain so the sum of the 

probabilities of a single line (of the matrix) is equal to 1. Thus, an initial state is set. The first state, of no wind, 𝑆0 

can be considered. Using a random uniform number, the following state of the wind speed can be determined. If 

𝑆0 is obtained, then first we check if the wind speed is 0. If the wind speed is not 0, then a random number from 

the interval of states 𝑆0 is used in order to generate a value. If the highest state is found then a distribution of a 

gamma parameter is used to calculate the wind speed. For intermediate states, a value is generated of a uniform 
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random number, it is taken from the range that corresponds to the state and it is set as the value of wind speed in 

that hour (Aksoy 2005). 

Note 2.4. A gamma distribution has been used to generate the value of the wind speed in the last state, 

because this distribution has fitted best for the data set in the study (Aksoy 2005). The explanation is that a 

distribution without a superior limit should be used in order to choose the values for the biggest state from the 

Markov chain, so wind speeds bigger than the observed ones can be generated. The main idea is to use the 

distribution that generates the biggest values for the last state (Aksoy 2005). 

3. Matlab source code  

In this section of the article the Matlab source code used in the case study is shown and commented. Each of 

the four programs is custom made by the authors.  

3.1. matrix.m 
%% Data gathering. 
WindData =  xlsread('Wind data.xls','unfiltred', 'C2:C22185'); 
WindDataFuture =  xlsread('Wind data.xls','unfiltred', 'C22186:C22329'); 
% Removal of the NaN (Not a Number) data 
WindData = WindData(isfinite(WindData(:, 1)), :); 
WindDataFuture = WindDataFuture(isfinite(WindDataFuture(:, 1)), :); 
  
% General properties 
 disp(sprintf('The lowest recorded speed: %f',min(WindData))); 
 disp(sprintf(' The highest recorded speed: %f',max(WindData))); 
 disp(sprintf('Mean speed: %f',mean(WindData))); 
  
%% The definition of the states. 
% Observation! The last state is v > 13 m/s. 
states = [0 1;1 2;2 3;3 4;4 5;5 6;6 7; 7 8;8 9;9 10;10 11; 11 12;12 13;13 27]; 
  
Markov1 = matrixMarkov(WindData, states, 1); 
disp(Markov1); 
  
Markov2calc = Markov1^2; 
disp('The 2nd order transition matrix calculated with Chapman-Kolmogorov equations:'); 
disp(Markov2calc); 
  
Markov2est = matrixMarkov(WindData, states, 2); 
disp(Markov2est); 
  
%% Generating data using the obtained Markov chain 
  
% Setting of the last known value 
last = WindData(length(WindData)); 
% The length of the string that we will compare to 
l = length(WindDataFuture); 
  
GeneratedWind = generateWind(Markov1, states, last, l); 
  
% The graph  
xAxis = 1:l; 
plot(xAxis, GeneratedWind, 'b*-', xAxis, WindDataFuture, 'ro-'); 
legend('Generated wind,'Real values'); 
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3.2. currentState.m 
%% Calculates the state in which the given value is assigned  
function [stateValue] = currentState(val, states) 
%% We initiate with state 1  
stateValue = 1; 
n = length(states); 
  
for k = 1:n 
    if (val > states(k,1) && val <= states(k,2)) 
        stateValue = k; 
    end 
end 

3.3. matrixMarkov.m 
%% Calculation of the Markov transition matrix of desired order  
% @param array data    The time series to analyze  
% @param array states  The states for the Markov chain  
% @param byte  ordinul The desired order  
% @return array Prob  The Markov transition matrix  
function [Prob] = matrixMarkov(data, states, ordin) 
    stateslength = length(states); 
     
    %% The initialization of the matrix  
    Prob = zeros (stateslength, stateslength); 
  
    n = length(data); 
  
    for i=1:n-ordin 
        cState = currentState(data(i), states); 
        nState = currentState(data(i+ordin), states); 
        Prob(cState, nState) = Prob(cState, nState) + 1; 
    end 
  
    for i=1:stateslength 
        Prob(i,:) = Prob(i,:)/ sum(Prob(i,:)); 
    end 
  
    disp(sprintf('The estimated matrix of transition of order %d is:',ordin)); 
end 
 

genValueRange.m 
%% Generates values in a given interval 
% @param integer min The minimum value  
% @param integer max The maximum value  
% @retrun integer val The generated value  
function [val] = genValueRange(min, max)  
    nr=1; 
    val=min+(max-min)*rand(1,1); 
end 

3.4. generateWind.m 
%% Generating values depending on the matrix of probabilities  
% @param array   prob The Markov transition matrix  
% @param array   states The states of the Markov chain 
% @param integer last   The values that calculates the state of the Markov chain  
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% @param integer num   The desired number of values  
% @return Generated The generated values  
function [Generated] = generateWind(prob, states, last, num)     
  
    lState = currentState(last, states); 
    disp(sprintf('State from which we leave: %d ',lState)); 
    for i=1:num 
             %%  Generate a random number  
            randomNum = rand(1); 
            disp(sprintf('The random value is: %f ',randomNum)); 
             
            [c nState] = min(abs(prob(lState,:)-randomNum)); 
             
            disp(sprintf('The new state is: %d ',nState)); 
                         
            Generated(i) = genValueRange(states(nState,1), states(nState,2)); 
            % Initialize the last state with the new one found  
            lState = nState; 
    end 
     
    disp('The generated values are:'); 
end 

4. Case study 

In this study data from a wind farm in Italy is used. The available data are as average wind speed at an 

interval of 10 minutes in the time period 11/23/2005 - 4/27/2006. 

The lowest recorded speed: 0 m/s. 

The highest recorded speed 26.08 m/s. 

The mean of speeds: 7.1505 m/s. 

The states of the Markov chain are defined as: 

 state 1: 𝑣 ∈ (0, 1]𝑚/𝑠; 
 state 2: 𝑣 ∈ (1, 2]𝑚/𝑠; 
 state 3: 𝑣 ∈ (2, 3]𝑚/𝑠; 
 state 4: 𝑣 ∈ (3, 4]𝑚/𝑠; 
 state 5: 𝑣 ∈ (4 5]𝑚/𝑠; 
 state 6: 𝑣 ∈ (5, 6]𝑚/𝑠; 
 state 7: 𝑣 ∈ (6,7]𝑚/𝑠; 
 state 8: 𝑣 ∈ (7,8]𝑚/𝑠; 
 state 9: 𝑣 ∈ (8,9]𝑚/𝑠; 
 state 10: 𝑣 ∈ (9,10]𝑚/𝑠;  
 state 11: 𝑣 ∈ (10,11]𝑚/𝑠;  
 state 12: 𝑣 ∈ (11,12]𝑚/𝑠;  
 state 13: 𝑣 ∈ (12,13]𝑚/𝑠;  
 state 14: 𝑣 > 13 𝑚/𝑠; 

In Table 1 the transition matrix of order 1 can be observed. The highest probabilities are on the diagonal of 

the matrix, meaning that the wind from a certain state is very likely to remain in the same state rather than to 

change its state. Also it can be observed that if the wind is in state 1, then the furthest it can reach is state 5, and 

also from state 14 the lowest it can get is state 9. It can be concluded that radical changes in the wind speed (from 

fast wind speed to low wind speed or from low wind speed to fast wind speed) do not occur in a time interval of 

10 minutes. 
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The Chapman-Kolmogorov equations that calculate the transition matrix of superior order have proven to be 

of use. By comparing tabel 1 with tabel 2 it can be observed that the 2
nd

 order transition matrix calculated with 

the Chapman-Kolmogorov equations has similar values with the 1st order transition matrix.. The largest 

difference between probabilities is 0.06 for the wind to remain in state 13.  

Tabel 1. The 1st order estimated transition matrix 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.6815 0.2713 0.0405 0.0054 0.0013 0 0 0 0 0 0 0 0 0 

2 0.1621 0.6032 0.2064 0.0199 0.0038 0.0038 0.0008 0 0 0 0 0 0 0 

3 0.0113 0.1734 0.5776 0.1955 0.0284 0.0095 0.0032 0.0013 0 0 0 0 0 0 

4 0.0026 0.0175 0.2038 0.5045 0.2283 0.0343 0.0058 0.0013 0.0019 0 0 0 0 0 

5 0.0005 0.0066 0.0234 0.1813 0.5358 0.2158 0.0300 0.0030 0.0030 0 0.0005 0 0 0 

6 0.0004 0.0013 0.0039 0.0246 0.1896 0.5450 0.1986 0.0289 0.0047 0.0017 0.0013 0 0 0 

7 0 0.0004 0 0.0044 0.0265 0.2124 0.5074 0.1950 0.0453 0.0074 0.0009 0 0.0004 0 

8 0 0 0 0.0010 0.0035 0.0297 0.2397 0.4726 0.2061 0.0366 0.0094 0.0015 0 0 

9 0 0 0 0 0.0006 0.0044 0.0470 0.2456 0.4292 0.2091 0.0498 0.0116 0.0028 0 

10 0 0 0 0  0.0006 0.0135 0.0488 0.2510 0.4307 0.2073 0.0347 0.0090 0.0045 

11 0 0 0 0 0.0007 0.0007 0.0037 0.0111 0.0656 0.2520 0.4385 0.1850 0.0354 0.0074 

12 0 0 0 0 0 0 0 0.0058 0.0087 0.0618 0.2599 0.4473 0.1749 0.0415 

13 0 0 0 0 0 0 0.0014 0.0014 0.0014 0.0114 0.0653 0.2798 0.4403 0.1989 

14 0 0 0 0 0 0 0 0 0.0005 0 0.0042 0.0244 0.0768 0.8940 

 

Tabel 2. The 2nd order transition matrix calculated with Chapman-Kolmogorov equations 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.5089 0.3556 0.1081 0.0200 0.0051 0.0019 0.0004 0.0001 0 0 0 0 0 0 

2 0.2106 0.4440 0.2545 0.0640 0.0157 0.0080 0.0025 0.0006 0.0001 0 0 0 0 0 

3 0.0429 0.2114 0.4103 0.2204 0.0788 0.0248 0.0077 0.0026 0.0009 0.0001 0 0 0 0 

4 0.0083 0.0569 0.2297 0.3370 0.2501 0.0885 0.0206 0.0048 0.0032 0.0006 0.0003 0 0 0 

5 0.0025 0.0152 0.0652 0.1988 0.3709 0.2462 0.0761 0.0162 0.0063 0.0015 0.0010 0.0001 0 0 

6 0.0009 0.0040 0.0141 0.0618 0.2160 0.3819 0.2220 0.0700 0.0207 0.0055 0.0024 0.0004 0.0002 0 

7 0.0002 0.0010 0.0024 0.0146 0.0696 0.2354 0.3494 0.2087 0.0856 0.0241 0.0068 0.0014 0.0006 0.0001 

8 0 0.0002 0.0004 0.0034 0.0158 0.0828 0.2512 0.3234 0.2067 0.0804 0.0270 0.0068 0.0016 0.0003 

9 0 0 0 0.0007 0.0035 0.0219 0.1068 0.2416 0.2928 0.2024 0.0921 0.0278 0.0081 0.0023 

10 0 0 0 0.0001 0.0009 0.0062 0.0370 0.1108 0.2404 0.2943 0.2028 0.0744 0.0223 0.0107 

11 0 0 0 0.0002 0.0010 0.0024 0.0128 0.0403 0.1243 0.2450 0.2983 0.1834 0.0664 0.0257 

12 0 0 0 0 0.0002 0.0004 0.0038 0.0136 0.0417 0.1238 0.2551 0.3004 0.1682 0.0927 

13 0 0 0 0 0.0001 0.0004 0.0021 0.0048 0.0113 0.0440 0.1334 0.2657 0.2605 0.2775 

14 0 0 0 0 0 0 0.0001 0.0004 0.0013 0.0036 0.0170 0.0550 0.1069 0.8156 

 

Tabel 3. The estimated 2nd order transition matrix 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.5628 0.3090 0.0958 0.0229 0.0081 0.0013 0 0 0 0 0 0 0 0 

2 0.1904 0.4817 0.2508 0.0466 0.0145 0.0084 0.0046 0.0015 0.0015 0 0 0 0 0 

3 0.0309 0.2208 0.4416 0.2145 0.0587 0.0215 0.0082 0.0013 0.0019 0.0006 0 0 0 0 

4 0.0110 0.0375 0.2199 0.3849 0.2490 0.0712 0.0175 0.0039 0.0032  0.0013 0.0006 0 0 

5 0.0025 0.0152 0.0569 0.1899 0.4058 0.2489 0.0543 0.0142 0.0071 0.0020 0.0020 0.0005 0.0005 0 

6 0.0013 0.0022 0.0116 0.0478 0.2111 0.4326 0.2176 0.0526 0.0151 0.0052 0.0022 0 0.0004 0.0004 

7 0.0004 0.0017 0.0026 0.0144 0.0540 0.2180 0.3808 0.2232 0.0757 0.0200 0.0061 0.0022 0.0009 0 

8 0 0 0.0010 0.0064 0.0188 0.0583 0.2650 0.3465 0.2012 0.0712 0.0252 0.0049 0.0005 0.0010 
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9 0 0.0006 0 0 0.0066 0.0210 0.0846 0.2378 0.3258 0.2052 0.0885 0.0177 0.0088 0.0033 

10 0 0 0 0.0006 0.0019 0.0051 0.0353 0.0950 0.2548 0.3267 0.1861 0.0668 0.0186 0.0090 

11 0 0.0007 0 0.0007 0 0.0037 0.0111 0.0398 0.1032 0.2351 0.3287 0.1945 0.0590 0.0236 

12 0 0 0 0 0 0.0010 0.0029 0.0126 0.0367 0.1053 0.2696 0.3237 0.1778 0.0705 

13 0 0.0014 0 0 0 0 0 0.0014 0.0043 0.0469 0.1080 0.2813 0.3224 0.2344 

14 0 0 0 0 0 0 0.0016 0.0016 0.0005 0.0053 0.0154 0.0445 0.0864 0.8447 

By using the 1
st
 order transition matrix, we made a wind speed forecast for 24h. We compared the forecast 

with the real data from that day, and a graphical comparison can be seen in figure 1. 

 
Figure 1. Graphical comparison between forecasted wind speed (represented with blue and stars) and real data (represented with red and 

circles) 

Some metrics may be used to express more precisely the vicinity between the estimated and actual wind. 

5. Conclusions 

In this paper it is presented the importance of knowing the wind speed and the reasons why a good forecast is 

needed. The future investments in creating wind turbines in order to generate wind energy depend on proper 

wind analysis.  

We have presented some of the models that have been used until the present days and we have conducted a 

case study using Markov chains. The result of the comparison between forecasted wind speed and real data for 

the selected wind farm indicates that this model is not the best, being very precisely on short term (the first hour) 

but after that it can take very different values.  

It is important to underline the fact that this method, due to a good forecast on the short term, can be used to 

fill in gaps in the time series, when these gaps are not for a long period of time, because the Markov chains lose 

their precision. The filling of gaps is a subject of interest, because many times the re-measurement is not 

possible, or it is costly or unpractical. 

Due to space limitation, the actual paper did not allow measurement with certain metrics of the vicinity of 

forecasted and actual values. 
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